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Abstract

In the note, we obtain the estimates for the rate of convergence for a sequeq&eoistein
polynomials{B, 4 (f)} for 0 < g <1 by the modulus of continuity df and the estimates are sharp
with respectto the order for Lipschitz continuous functions. We also get the exact orders of convergence
for a family of functionsf (x) = x*, «>0, « # 1, and the orders do not depend arunlike the
classical case.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Letg > 0. For each nonnegative intedertheq-integer{k] and theg-factorial[k]! are
defined by

k
k] = {/(cl_q )/ (A =q). Zii
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and

k]l —1]---[1], k=1

L1t 12{1, k=0

respectively. For the integets k, n >k >0, theg-binomial coefficients are defined by (see
[3, p. 12])

I:ni| _ Inl!
k|7 [kl'n = k]

In 1997, Phillips proposed the followingsBernstein polynomial®, ,(f, x) . For each
positive integen, andf € CI[0, 1], we define

n—k—1

- k
Bug(fox) =) f (%) mxk [T a-¢'n. (1.2)
k=0 s=0

where itis agreed that an empty product denotes 1 (see [6]). Wkeh, B, ,( f, x) reduce
to the well-known Bernstein polynomial;, (f, x):

" k
Bu(fi) =Y f (;> <Z ) = 0k,
k=0

In recent years, thg-Bernstein polynomials have attracted much interest, and a great
number of interesting results related to thBernstein polynomials have been obtained (see
[2,5-9]). This note is concerned with the quantitative results for the rate of convergence of
theg-Bernstein polynomials for & ¢ < 1. Forf € CI[0, 1], ¢t > 0, we define the modulus
of continuity w(f, t) and the second modulus of smoothnessf, ¢) as follows:

o(f;t):= sup |f(x)—fOI,

lx—yl <t

w2(f, 1) ;== sup sup  |f(x+2h) —2f(x +h)+ f(x).
O<h <t x€[0,1-2h]

For fixedq € (0, 1), II'inskii and Ostrovska proved in [2] that for eaghe C[0, 1], the
sequencgB, 4(f, x)} converges tdB 4 (f, x) asn — oo uniformly forx € [0, 1], where

o0 ok xk o0 s
Zk:o f(l q )(l—q)k[k]! l_[szo(l q x)v 0<X < 1: (12)
f(), x =1

The first author of the note gave the following quantitative result for the rate of conver-
gence of tha-Bernstein polynomials (see [9]):

1B (f) = Boog ()l <c w2(f, Vg ) (1.3)

with || - || the uniform norm, here is an absolute constant. Note that whep) = x2, we
have (see [9]):

Boo,q(fv X) = {

ne—
1Bn.q(f) = Boog ()l = sup Lq,,q)x(l—X) = q" =< w2(f.\/q"),

xe[0,1] 1-—
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whereA(n) < B(n) meansthati(n) < B(n) andA(n) > B(n),andA(n) <« B(n) means
that there exists a positive constarihdependent ofi such thatA (n) <c B(n). Hence the
estimate (1.3) is sharp in the following sense: the sequefa@en (1.3) cannot be replaced
by any other sequence decreasing to zero more rapidly-asoco.

In the casey = 1, we have (see [1, p. 308])

1Ba(f) = fIl € wa(f.n 2 < ox(f.n 713,
The above estimates are both sharp in the sense of order, and for the fuggtions=
x*, a >0, a # 1, we have the following estimates:

nmH2 0<a<?2 a#l _
1Bu(g) — gall =< {n_l #L 2 oagnn ),

, o> 2
Note that the relation$B, (g,) — gxIl =< w(g,, n~/2) hold only for 0< « < 1. So in the
caseg = 1, the second modulus of smoothness is more appropriate to describe the degree
of approximation of the Bernstein polynomials than the modulus of continuity.
What about the case & ¢ < 1? One may think it is similar to the cage= 1 and
conjecture that the inequality

1By (f) — Boo.g (NIl € @(f, /q")

is sharp in the sense of order. However, the above conjecture is wrong. In the note, we
obtain the estimates for the rate of convergence{Bernstein polynomial§B;, ,(f)} for

0 < g < 1linterms ofw(f, -), and the estimates are sharp with respect to the order for
Lipschitz continuous functions. Our results show that in the caseyO< 1, w(f, -) is more
appropriate to describe the rate of convergence{fBernstein polynomialgB, , ()} than

w2(f, -) (see the following Remark 1), and this is different from that in the gasel. We

also get the exact orders of approximatji®), , (gx) — Boo,q (g2) 1, and unlike the classical
case, the orders do not depend on the indé€x > 0, o« # 1). Our main results are the
following:

Theorem 1. Letg € (0,1),and letf € C[0, 1]. Then
[1Bn.g (f) = Boo,g (/IS Cqox(f, q"), (1.4)

4in -
whereCy = 2+ 75

for eacha, 0 < a<1, there exists a functiorf, (x) which belongs to the Lipschitz class
Lipo:={ f € C[0, 1] | o(f, t) < t* } such that

1Bn,g(fx) = Boo,q (f)Il > ¢*". (1.5)

The above estimate is sharp in the following sense of order:

Remark 1. Combining (1.4) and (1.5), for each 0 < « <1, we obtain

SUp 1Buq(f) — Boo,g (NIl < g*". (1.6)
felipa

Note that if we use the estimate (1.3), we can only get that
SUp |Bu.g(f) — Boo g (/I < ~/q*".

felipa
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Theorem 2. Letg € (0,1),and letg,(x) = x%, « > 0, o # 1.Then

1Bn,q(82) — Boo,g (8l < ¢". (1.7)

2. Proofs of Theorems 1-2

In the sequel, we always assume that (0, 1), n € N, andf is a continuous function
on|O, 1].

Proof of Theorem 1. Itfollows directly from (1.1) and (1.2) tha, , (f, x) andBs 4 (f, x)
possess the end point interpolation property, in other words,

Bn,q(fv 0) = Boo,q (fa 0) = f(o)v Bn,q(fa = Boo,q(fv = f(l) (2-1)

It was proved in [2,6] thaB, ,(f; x) andB, ,(f, x) reproduce linear functions, that is,

B, 4(at +b,x) = Boog(at + b, x) = ax + b. (2.2)
We set
n n—k—1 ok 0
k s K
D X)i= 1- , X)) =————— 1- .
Puk(g: %) [k}x 11 L=¢"x).  Pook(gi) (l_q)k[k],g q°x)

Obviously pux(g; x) >0, poor(q; x) =0 for all x € [0, 1]. It follows from (2.2) (with
a=0, b=1)that

> puklgix) = pock(gi x) = 1. (2.3)
k=0 k=0

Hence for allx € (0, 1), by the definitions oB, ,(f, x) and B ,(f, x), and by (2.3) we
know that

|Bn,q(fs )C) - Boo,q(fv x)|

=Y FUKY/ D par(gs x) = Y f (L= ") pock(q: x)
k=0 k=0
=Y (UKD = FD)pur(q: ) = Y _(fF(L—g") = £(D)) pook(g: x)
k=0 k=0
<D IFUAKI/InD) = £ L= g5 par(g; %)
k=1
+ D 1f A= = FDI Ipak(g; X) = pook(g; X))
k=0
+ ) 1fA=g" = fFDlpock(gs x) = I1+ Iz + I3. (2.4)

k=n+1
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First we estimatdy, I3. Since

[k] 1-g* "1-¢%
0<i i~ -gh = - A-gh =Ty
(n] l—g l-g

0<1-(1-¢"=¢"<q" k=n+1),
we get
n<olf,q" Y pulg: x) = o(f, q")
k=0

and

BLo(f.q") Y pooklg; ) <o(f, g").
k=n+1

Now we estimatd,. Using the property of modulus of continuity (see [4, p. 20])
o(f, <A+ DHo(f,1), 41>0,

we get

Io <) o(f, 4 puk (g5 X) — pock (q; X))
k=0

<Y ol g A+ ¢ par(q; X) — pook(q; )|

k=0
1 « 2
<2004 =Y q*par(@: x) — pock (q: 1)1 =0 — w(f.q") - J.,
q" =% q
where
n " n—k—1 ok 00
J = k k 1 _ s _ 1 _ N
l;q [k]x 51:!) (1-¢"x) —(1—q)k[k]!££( q*x)
n " n—k—1 oo
=> ¢ [k}ﬁ< ﬂ—qﬁﬁ—rkl—fxo
k=0 s=0 s=0
o fla-en (3]t
0 k (1= @)*[k]!
<D dpmlgin) [1- [] A-¢'x)
k=0 s=n—k
+Y d'poalgsn) | [ @-gH-1).
k=0 s=n—k+1
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Assume for a moment that the inequality

q’ 1

1- ]_[(1 4" < (G=12..) (2.8)
e -9 "1-q
holds. Then we obtain
o 00 qn—k 1
1-¢'0| <1~ 1-¢H< In ,
s:nl—[—k s:nl_[k q(1—-q) l-g
and
n
[] a-4"
s=n—k+1
o° n—k+1 n—k
q 1 q 1
<1- 1-¢")< In < In .
s:rg(+l ql-—q) l-qg ql-q) 1-g¢g
Hence
< In k(q; x)+ «(q; x) In .
g1l—¢q) 1- (an 4 ,;)pw i gl—gq) 1—g
(2.9)

From (2.1), (2.4)-(2.7), and (2.9), we conclude that

1Bn.q (f) = Boog (NI <Cqor(f, g"),

41n 1 Aln =
qd=q)"

Now we return to the inequality (2.8) left open above. We note that the inequality
1 — exp(—x) < x holds for eachx € [0, co). Then

1—ﬁ(1—qs)=l—exp —§:In1
s=j

s=j

whereC, = 2 +

ad 1
<Xy
s=j

o0

From the monotonicity of the functiof In {1~ = Y2° 1 2= x € [0, 1) we know that

for all x € (0, ¢,

X 1
In <—-1In
1—x l—g
Hence
o
1 q’ 1
1_ (1_ S)< S—l
H 1 Zq 1-y¢q l-9) 1-gq
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At last we show that the estimate (1.4) is sharp. For eachh < «<1, suppose that
f(x) is a continuous function which is equal to zerdin1 — g] and[1 — ¢2, 1], equal to
x—A—-¢g)*in[l—g,1—q+q@—qg)/2],and linear in the rest gD, 1]. Then

w(fda t) = t“a
and

1 Bg (f2) = Boo,q (f)Il < ¢*" l pua(q; Il < ¢™".
The proof of Theorem 1 is complete™d

Denote byw( f, t)[1—4,1; the modulus of continuity on the intervidl — g, 1], that is,
o(fiDi—gn= sup [f(&x)—=fOI

[x—yl<t
x,y€[l—q,1]

Then we have
[ Bq (f) = Boo,g (DI < q" I fIl + o(f, ") 1—g.1)- (2.10)

In fact, if we take cqntinuou§ = fon[l-gq,1]J{0} and linear on0, 1 — ¢], we
g€t By 4(f) = Bng(f) andBw 4(f) = Boog(f). Atthe same timeo(f,1) < || fllt +
o(f, D1—¢,11- BY (1.4) we get (2.10).

Remark 2. From the proof of Theorem 1, we know that the rate of convergencg-for
Bernstein polynomial®, ,(f, x) depends only on the smoothness of the funciign) at
the points 1— ¢, k = 1,2, - - - (from the right), and at = 1.

Proof of Theorem 2. Sincew(x*, t)[1—4,1) < t holds for each: > 0, « # 1, by (2.10) we
obtain that
”Bn,q(tx) - Boo,q(ta)” < qn.

Now we prove the lower estimates B, , (t*) — Boo,q (t*)|| foralla > 0, o # 1. From
the formulas (7.61) and (7.62) in [7, p. 270], we knovi i§ a convex (concave) function,
then the sequende, , (f, x)} is decreasing (increasing) for eacte [0, 1], and also

|Bug (f. %) = Bus1.g(f: 0l = Y lank ()] Putik(g; %),

k=1
where
_ [n4+1—k] @ n+1—k [k] ([k_l])_ ( (k] >
ank(f) = [n+1] f([n]>+q [n~|—l]f [n] f (n+11/)"
(2.12)

Since the functions* are concave for all 6 « < 1 and convex for alk: > 1, then for all
o >0, o #1we get
|Bng (1%, ) — Boo,g (1%, X)| = |Bn g (1%, x) — Byy1,4(t%, x)| > an1(t)| pny11(q; x).
(2.12)
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It follows from (2.11) that

g "lan1(x™)]

wig (o) - (a)
[n+ 1] \[n] [n+1]

—n

—n

-4
[n+1]

—n

= [n‘l+ T ’ L—o) E*([n]—[n+ 1])’ (whereé e ([n], [n + 1]))
-9

where in the last equality, we use the fact that — 1 — ¢ asn — oco. From (2.12) and
(2.13) we conclude that

1 Br,q (t*) = Boo g (1) = lan1(x™)| | put11(g; )1l > q".

The proof of Theorem 2 is finished.[]
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