

Available online at www.sciencedirect.com

JOURNAL OF Approximation Theory

Journal of Approximation Theory 136 (2005) 151-158

www.elsevier.com/locate/jat

The rate of convergence of *q*-Bernstein polynomials for $0 < q < 1^{\mbox{\tiny $\%$}}$

Heping Wang*, Fanjun Meng

Department of Mathematics, Capital Normal University, Beijing 100037, People's Republic of China

Received 4 March 2005; accepted 7 July 2005

Communicated by Dany Leviatan

Abstract

In the note, we obtain the estimates for the rate of convergence for a sequence of q-Bernstein polynomials $\{B_{n,q}(f)\}$ for 0 < q < 1 by the modulus of continuity of f, and the estimates are sharp with respect to the order for Lipschitz continuous functions. We also get the exact orders of convergence for a family of functions $f(x) = x^{\alpha}$, $\alpha > 0$, $\alpha \neq 1$, and the orders do not depend on α , unlike the classical case.

© 2005 Elsevier Inc. All rights reserved.

MSC: 41A10; 41A25; 41A35; 41A36

Keywords: q-Bernstein polynomials; Rate of approximation; Modulus of continuity

1. Introduction

Let q > 0. For each nonnegative integer k, the q-integer [k] and the q-factorial [k]! are defined by

$$[k] := \begin{cases} (1 - q^k)/(1 - q), & q \neq 1 \\ k, & q = 1 \end{cases}$$

E-mail address: wanghp@mail.cnu.edu.cn (H. Wang).

0021-9045/\$ - see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jat.2005.07.001

[↑] Supported by National Natural Science Foundation of China (Project no. 10201021), Scientific Research Common Program of Beijing Municipal Commission of Education (Project no. KM200310028106), and by Beijing Natural Science Foundation.

^{*} Corresponding author.

and

$$[k]! := \begin{cases} [k][k-1] \cdots [1], & k \ge 1\\ 1, & k = 0 \end{cases}$$

respectively. For the integers n, k, $n \ge k \ge 0$, the q-binomial coefficients are defined by (see [3, p. 12])

$$\left[\begin{array}{c} n \\ k \end{array}\right] := \frac{[n]!}{[k]![n-k]!}.$$

In 1997, Phillips proposed the following q-Bernstein polynomials $B_{n,q}(f, x)$. For each positive integer n, and $f \in C[0, 1]$, we define

$$B_{n,q}(f,x) := \sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) \begin{bmatrix} n \\ k \end{bmatrix} x^{k} \prod_{s=0}^{n-k-1} (1 - q^{s}x), \tag{1.1}$$

where it is agreed that an empty product denotes 1 (see [6]). When q = 1, $B_{n,q}(f, x)$ reduce to the well-known Bernstein polynomials $B_n(f, x)$:

$$B_n(f,x) := \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$

In recent years, the q-Bernstein polynomials have attracted much interest, and a great number of interesting results related to the q-Bernstein polynomials have been obtained (see [2,5–9]). This note is concerned with the quantitative results for the rate of convergence of the q-Bernstein polynomials for 0 < q < 1. For $f \in C[0, 1]$, t > 0, we define the modulus of continuity $\omega(f, t)$ and the second modulus of smoothness $\omega_2(f, t)$ as follows:

$$\omega(f;t) := \sup_{\substack{|x-y| \le t \\ y \text{ y} \in [0,1]}} |f(x) - f(y)|,$$

$$\omega_2(f,t) := \sup_{0 < h \leqslant t} \sup_{x \in [0,1-2h]} |f(x+2h) - 2f(x+h) + f(x)|.$$

For fixed $q \in (0, 1)$, II'inskii and Ostrovska proved in [2] that for each $f \in C[0, 1]$, the sequence $\{B_{n,q}(f, x)\}$ converges to $B_{\infty,q}(f, x)$ as $n \to \infty$ uniformly for $x \in [0, 1]$, where

$$B_{\infty,q}(f,x) := \begin{cases} \sum_{k=0}^{\infty} f(1-q^k) \frac{x^k}{(1-q)^k [k]!} \prod_{s=0}^{\infty} (1-q^s x), & 0 \leqslant x < 1, \\ f(1), & x = 1. \end{cases}$$
(1.2)

The first author of the note gave the following quantitative result for the rate of convergence of the q-Bernstein polynomials (see [9]):

$$||B_{n,q}(f) - B_{\infty,q}(f)|| \le c \omega_2(f, \sqrt{q^n})$$
 (1.3)

with $\|\cdot\|$ the uniform norm, here c is an absolute constant. Note that when $f(x) = x^2$, we have (see [9]):

$$||B_{n,q}(f) - B_{\infty,q}(f)|| = \sup_{x \in [0,1]} \frac{q^n (1-q)}{1-q^n} x(1-x) \times q^n \times \omega_2(f, \sqrt{q^n}),$$

where $A(n) \approx B(n)$ means that $A(n) \ll B(n)$ and $A(n) \gg B(n)$, and $A(n) \ll B(n)$ means that there exists a positive constant c independent of n such that $A(n) \leqslant c B(n)$. Hence the estimate (1.3) is sharp in the following sense: the sequence $\sqrt{q^n}$ in (1.3) cannot be replaced by any other sequence decreasing to zero more rapidly as $n \to \infty$.

In the case q = 1, we have (see [1, p. 308])

$$||B_n(f) - f|| \ll \omega_2(f, n^{-1/2}) \ll \omega(f, n^{-1/2}).$$

The above estimates are both sharp in the sense of order, and for the functions $g_{\alpha}(x) := x^{\alpha}$, $\alpha > 0$, $\alpha \neq 1$, we have the following estimates:

$$||B_n(g_\alpha) - g_\alpha|| \simeq \begin{cases} n^{-\alpha/2}, & 0 < \alpha < 2, \ \alpha \neq 1 \\ n^{-1}, & \alpha > 2 \end{cases} \simeq \omega_2(g_\alpha, n^{-1/2}).$$

Note that the relations $||B_n(g_\alpha) - g_\alpha|| \approx \omega(g_\alpha, n^{-1/2})$ hold only for $0 < \alpha < 1$. So in the case q = 1, the second modulus of smoothness is more appropriate to describe the degree of approximation of the Bernstein polynomials than the modulus of continuity.

What about the case 0 < q < 1? One may think it is similar to the case q = 1 and conjecture that the inequality

$$||B_{n,q}(f) - B_{\infty,q}(f)|| \ll \omega(f, \sqrt{q^n})$$

is sharp in the sense of order. However, the above conjecture is wrong. In the note, we obtain the estimates for the rate of convergence for q-Bernstein polynomials $\{B_{n,q}(f)\}$ for 0 < q < 1 in terms of $\omega(f,\cdot)$, and the estimates are sharp with respect to the order for Lipschitz continuous functions. Our results show that in the case 0 < q < 1, $\omega(f,\cdot)$ is more appropriate to describe the rate of convergence for q-Bernstein polynomials $\{B_{n,q}(f)\}$ than $\omega_2(f,\cdot)$ (see the following Remark 1), and this is different from that in the case q=1. We also get the exact orders of approximation $\|B_{n,q}(g_\alpha) - B_{\infty,q}(g_\alpha)\|$, and unlike the classical case, the orders do not depend on the index α ($\alpha > 0$, $\alpha \neq 1$). Our main results are the following:

Theorem 1. Let $q \in (0, 1)$, and let $f \in C[0, 1]$. Then

$$||B_{n,q}(f) - B_{\infty,q}(f)|| \le C_q \omega(f, q^n),$$
 (1.4)

where $C_q = 2 + \frac{4 \ln \frac{1}{1-q}}{q(1-q)}$. The above estimate is sharp in the following sense of order: for each α , $0 < \alpha \le 1$, there exists a function $f_{\alpha}(x)$ which belongs to the Lipschitz class Lip $\alpha := \{ f \in C[0,1] \mid \omega(f,t) \ll t^{\alpha} \}$ such that

$$||B_{n,q}(f_{\alpha}) - B_{\infty,q}(f_{\alpha})|| \gg q^{\alpha n}.$$

$$\tag{1.5}$$

Remark 1. Combining (1.4) and (1.5), for each α , $0 < \alpha \le 1$, we obtain

$$\sup_{f \in Lip \,\alpha} \|B_{n,q}(f) - B_{\infty,q}(f)\| \approx q^{\alpha n}. \tag{1.6}$$

Note that if we use the estimate (1.3), we can only get that

$$\sup_{f \in Lip \,\alpha} \|B_{n,q}(f) - B_{\infty,q}(f)\| \ll \sqrt{q^{\alpha n}}.$$

Theorem 2. Let $q \in (0, 1)$, and let $g_{\alpha}(x) = x^{\alpha}$, $\alpha > 0$, $\alpha \neq 1$. Then

$$||B_{n,q}(g_{\alpha}) - B_{\infty,q}(g_{\alpha})|| \simeq q^{n}. \tag{1.7}$$

2. Proofs of Theorems 1-2

In the sequel, we always assume that $q \in (0, 1)$, $n \in \mathbb{N}$, and f is a continuous function on [0, 1].

Proof of Theorem 1. It follows directly from (1.1) and (1.2) that $B_{n,q}(f, x)$ and $B_{\infty,q}(f, x)$ possess the end point interpolation property, in other words,

$$B_{n,q}(f,0) = B_{\infty,q}(f,0) = f(0), \qquad B_{n,q}(f,1) = B_{\infty,q}(f,1) = f(1).$$
 (2.1)

It was proved in [2,6] that $B_{\infty,q}(f;x)$ and $B_{n,q}(f,x)$ reproduce linear functions, that is,

$$B_{n,q}(at+b,x) = B_{\infty,q}(at+b,x) = ax+b.$$
 (2.2)

We set

$$p_{nk}(q;x) := \begin{bmatrix} n \\ k \end{bmatrix} x^k \prod_{s=0}^{n-k-1} (1 - q^s x), \qquad p_{\infty k}(q;x) := \frac{x^k}{(1 - q)^k [k]!} \prod_{s=0}^{\infty} (1 - q^s x).$$

Obviously $p_{nk}(q; x) \ge 0$, $p_{\infty k}(q; x) \ge 0$ for all $x \in [0, 1]$. It follows from (2.2) (with a = 0, b = 1) that

$$\sum_{k=0}^{n} p_{nk}(q; x) = \sum_{k=0}^{\infty} p_{\infty k}(q; x) = 1.$$
(2.3)

Hence for all $x \in (0, 1)$, by the definitions of $B_{n,q}(f, x)$ and $B_{\infty,q}(f, x)$, and by (2.3) we know that

$$|B_{n,q}(f,x) - B_{\infty,q}(f,x)|$$

$$= \left| \sum_{k=0}^{n} f([k]/[n]) p_{nk}(q;x) - \sum_{k=0}^{\infty} f(1-q^{k}) p_{\infty k}(q;x) \right|$$

$$= \left| \sum_{k=0}^{n} (f([k]/[n]) - f(1)) p_{nk}(q;x) - \sum_{k=0}^{\infty} (f(1-q^{k}) - f(1)) p_{\infty k}(q;x) \right|$$

$$\leq \sum_{k=1}^{n} |f([k]/[n]) - f(1-q^{k})| p_{nk}(q;x)$$

$$+ \sum_{k=0}^{n} |f(1-q^{k}) - f(1)| |p_{nk}(q;x) - p_{\infty k}(q;x)|$$

$$+ \sum_{k=n+1}^{\infty} |f(1-q^{k}) - f(1)| p_{\infty k}(q;x) =: I_{1} + I_{2} + I_{3}.$$
(2.4)

First we estimate I_1 , I_3 . Since

$$0 \leqslant \frac{[k]}{[n]} - (1 - q^k) = \frac{1 - q^k}{1 - q^n} - (1 - q^k) = \frac{q^n (1 - q^k)}{1 - q^n} \leqslant q^n,$$

$$0 \leqslant 1 - (1 - q^k) = q^k \leqslant q^n \quad (k \geqslant n + 1),$$

we get

$$I_1 \leqslant \omega(f, q^n) \sum_{k=0}^{n} p_{nk}(q; x) = \omega(f, q^n)$$
(2.5)

and

$$I_3 \leqslant \omega(f, q^n) \sum_{k=n+1}^{\infty} p_{\infty k}(q; x) \leqslant \omega(f, q^n). \tag{2.6}$$

Now we estimate I_2 . Using the property of modulus of continuity (see [4, p. 20])

$$\omega(f, \lambda t) \leq (1 + \lambda)\omega(f, t), \quad \lambda > 0,$$

we get

$$I_{2} \leq \sum_{k=0}^{n} \omega(f, q^{k}) |p_{nk}(q; x) - p_{\infty k}(q; x)|$$

$$\leq \sum_{k=0}^{n} \omega(f, q^{n}) (1 + q^{k-n}) |p_{nk}(q; x) - p_{\infty k}(q; x)|$$

$$\leq 2\omega(f, q^{n}) \frac{1}{q^{n}} \sum_{k=0}^{n} q^{k} |p_{nk}(q; x) - p_{\infty k}(q; x)| =: \frac{2}{q^{n}} \omega(f, q^{n}) \cdot J, \qquad (2.7)$$

where

$$J := \sum_{k=0}^{n} q^{k} \left| \begin{bmatrix} n \\ k \end{bmatrix} x^{k} \prod_{s=0}^{n-k-1} (1 - q^{s}x) - \frac{x^{k}}{(1 - q)^{k}[k]!} \prod_{s=0}^{\infty} (1 - q^{s}x) \right|$$

$$= \sum_{k=0}^{n} q^{k} \left| \begin{bmatrix} n \\ k \end{bmatrix} x^{k} \left(\prod_{s=0}^{n-k-1} (1 - q^{s}x) - \prod_{s=0}^{\infty} (1 - q^{s}x) \right) + x^{k} \prod_{s=0}^{\infty} (1 - q^{s}x) \left(\begin{bmatrix} n \\ k \end{bmatrix} - \frac{1}{(1 - q)^{k}[k]!} \right) \right|$$

$$\leq \sum_{k=0}^{n} q^{k} p_{nk}(q; x) \left| 1 - \prod_{s=n-k}^{\infty} (1 - q^{s}x) \right|$$

$$+ \sum_{k=0}^{n} q^{k} p_{\infty k}(q; x) \left| \prod_{s=n-k+1}^{n} (1 - q^{s}) - 1 \right|.$$

Assume for a moment that the inequality

$$1 - \prod_{s=j}^{\infty} (1 - q^s) \leqslant \frac{q^j}{q(1-q)} \ln \frac{1}{1-q} \quad (j = 1, 2, \ldots)$$
 (2.8)

holds. Then we obtain

$$\left| 1 - \prod_{s=n-k}^{\infty} (1 - q^s x) \right| \le 1 - \prod_{s=n-k}^{\infty} (1 - q^s) \le \frac{q^{n-k}}{q(1-q)} \ln \frac{1}{1-q},$$

and

$$\left| 1 - \prod_{s=n-k+1}^{n} (1 - q^{s}) \right|$$

$$\leq 1 - \prod_{s=n-k+1}^{\infty} (1 - q^{s}) \leq \frac{q^{n-k+1}}{q(1-q)} \ln \frac{1}{1-q} \leq \frac{q^{n-k}}{q(1-q)} \ln \frac{1}{1-q}.$$

Hence

$$J \leqslant \frac{q^n}{q(1-q)} \ln \frac{1}{1-q} \left(\sum_{k=0}^n p_{nk}(q;x) + \sum_{k=0}^n p_{\infty k}(q;x) \right) \leqslant \frac{2q^n}{q(1-q)} \ln \frac{1}{1-q}.$$
(2.9)

From (2.1), (2.4)–(2.7), and (2.9), we conclude that

$$||B_{n,q}(f) - B_{\infty,q}(f)|| \leq C_q \omega(f,q^n),$$

where
$$C_q = 2 + \frac{4 \ln \frac{1}{1-q}}{q(1-q)}$$
.

Now we return to the inequality (2.8) left open above. We note that the inequality $1 - \exp(-x) \le x$ holds for each $x \in [0, \infty)$. Then

$$1 - \prod_{s=j}^{\infty} (1 - q^s) = 1 - \exp\left(-\sum_{s=j}^{\infty} \ln \frac{1}{1 - q^s}\right) \leqslant \sum_{s=j}^{\infty} \ln \frac{1}{1 - q^s}.$$

From the monotonicity of the function $\frac{1}{x} \ln \frac{1}{1-x} = \sum_{n=0}^{\infty} \frac{x^n}{n+1}$, $x \in [0, 1)$ we know that for all $x \in (0, q]$,

$$\ln \frac{1}{1-x} \leqslant \frac{x}{q} \ln \frac{1}{1-q}.$$

Hence

$$1 - \prod_{s=j}^{\infty} (1 - q^s) \leqslant \sum_{s=j}^{\infty} q^{s-1} \ln \frac{1}{1 - q} = \frac{q^j}{q(1 - q)} \ln \frac{1}{1 - q}.$$

At last we show that the estimate (1.4) is sharp. For each α , $0 < \alpha \le 1$, suppose that $f_{\alpha}(x)$ is a continuous function which is equal to zero in [0, 1-q] and $[1-q^2, 1]$, equal to $(x-(1-q))^{\alpha}$ in [1-q, 1-q+q(1-q)/2], and linear in the rest of [0, 1]. Then

$$\omega(f_{\alpha},t) \simeq t^{\alpha}$$

and

$$||B_{n,q}(f_{\alpha})-B_{\infty,q}(f_{\alpha})|| \simeq q^{\alpha n}||p_{n1}(q;\cdot)|| \simeq q^{\alpha n}.$$

The proof of Theorem 1 is complete. \Box

Denote by $\omega(f,t)_{[1-q,1]}$ the modulus of continuity on the interval [1-q,1], that is,

$$\omega(f;t)_{[1-q,1]} = \sup_{\substack{|x-y| \le t \\ x,y \in [1-q,1]}} |f(x) - f(y)|.$$

Then we have

$$||B_{n,q}(f) - B_{\infty,q}(f)|| \ll q^n ||f|| + \omega(f, q^n)_{[1-q, 1]}.$$
(2.10)

In fact, if we take continuous $\tilde{f} = f$ on $[1 - q, 1] \bigcup \{0\}$ and linear on [0, 1 - q], we get $B_{n,q}(f) = B_{n,q}(\tilde{f})$ and $B_{\infty,q}(f) = B_{\infty,q}(\tilde{f})$. At the same time $\omega(\tilde{f}, t) \ll ||f|| t + \omega(f, t)_{[1-q,1]}$. By (1.4) we get (2.10).

Remark 2. From the proof of Theorem 1, we know that the rate of convergence for q-Bernstein polynomials $B_{n,q}(f,x)$ depends only on the smoothness of the function f(x) at the points $1 - q^k$, $k = 1, 2, \cdots$ (from the right), and at x = 1.

Proof of Theorem 2. Since $\omega(x^{\alpha}, t)_{[1-q,1]} \approx t$ holds for each $\alpha > 0$, $\alpha \neq 1$, by (2.10) we obtain that

$$||B_{n,q}(t^{\alpha}) - B_{\infty,q}(t^{\alpha})|| \ll q^n.$$

Now we prove the lower estimates of $||B_{n,q}(t^{\alpha}) - B_{\infty,q}(t^{\alpha})||$ for all $\alpha > 0$, $\alpha \neq 1$. From the formulas (7.61) and (7.62) in [7, p. 270], we know if f is a convex (concave) function, then the sequence $\{B_{n,q}(f,x)\}$ is decreasing (increasing) for each $x \in [0,1]$, and also

$$|B_{n,q}(f,x) - B_{n+1,q}(f,x)| = \sum_{k=1}^{n} |a_{nk}(f)| \ p_{n+1,k}(q;x),$$

where

$$a_{nk}(f) = \frac{[n+1-k]}{[n+1]} f\left(\frac{[k]}{[n]}\right) + q^{n+1-k} \frac{[k]}{[n+1]} f\left(\frac{[k-1]}{[n]}\right) - f\left(\frac{[k]}{[n+1]}\right). \tag{2.11}$$

Since the functions x^{α} are concave for all $0 < \alpha < 1$ and convex for all $\alpha > 1$, then for all $\alpha > 0$, $\alpha \neq 1$ we get

$$|B_{n,q}(t^{\alpha}, x) - B_{\infty,q}(t^{\alpha}, x)| \geqslant |B_{n,q}(t^{\alpha}, x) - B_{n+1,q}(t^{\alpha}, x)| \geqslant |a_{n1}(t^{\alpha})| \ p_{n+11}(q; x).$$
(2.12)

It follows from (2.11) that

$$q^{-n}|a_{n1}(x^{\alpha})| = q^{-n} \left| \frac{[n]}{[n+1]} \left(\frac{[1]}{[n]} \right)^{\alpha} - \left(\frac{[1]}{[n+1]} \right)^{\alpha} \right| = \frac{q^{-n}}{[n+1]} \left| [n]^{1-\alpha} - [n+1]^{1-\alpha} \right|$$

$$= \frac{q^{-n}}{[n+1]} \left| (1-\alpha) \, \xi^{-\alpha} \left([n] - [n+1] \right) \right| \quad \text{(where } \xi \in ([n], [n+1])\text{)}$$

$$= \frac{1-q}{1-q^{n+1}} \left| (1-\alpha) \, \xi^{-\alpha} \right| \to (1-q)^{1+\alpha} |1-\alpha| \quad \text{as } n \to \infty,$$
 (2.13)

where in the last equality, we use the fact that $\xi^{-1} \to 1 - q$ as $n \to \infty$. From (2.12) and (2.13) we conclude that

$$||B_{n,q}(t^{\alpha}) - B_{\infty,q}(t^{\alpha})|| \ge |a_{n1}(x^{\alpha})| ||p_{n+1}(q;\cdot)|| \gg q^n.$$

The proof of Theorem 2 is finished. \Box

Acknowledgments

The authors are very grateful to the anonymous referees and Professor D. Leviatan for many valuable comments and suggestions which helped to improve the drafts.

References

- [1] R.A. Devore, G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
- [2] A. Il'inskii, S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116(1) (2002) 100–112.
- [3] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.
- [4] G.G. Lorentz, Bernstein Polynomials, Mathematical Expo. vol. 8, University of Toronto Press, Toronto, 1953.
- [5] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory 123 (2) (2003) 232–255.
- [6] G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997) 511–518.
- [7] G.M. Phillips, Interpolation and Approximation by Polynomials, CMS Books in Mathematics, vol. 14, Springer, Berlin, 2003.
- [8] V.S. Videnskii, On some classes of q-parametric positive operators, Operator Theory: Adv. Appl. 158 (2005) 213–222.
- [9] Wang Heping, Korovkin-type theorem and application, J. Approx. Theory 132 (2) (2005) 258-264.