The rate of convergence of q-Bernstein polynomials for $0<q<1$ 级

Heping Wang*, Fanjun Meng
Department of Mathematics, Capital Normal University, Beijing 100037, People's Republic of China

Received 4 March 2005; accepted 7 July 2005
Communicated by Dany Leviatan

Abstract

In the note, we obtain the estimates for the rate of convergence for a sequence of q-Bernstein polynomials $\left\{B_{n, q}(f)\right\}$ for $0<q<1$ by the modulus of continuity of f, and the estimates are sharp with respect to the order for Lipschitz continuous functions. We also get the exact orders of convergence for a family of functions $f(x)=x^{\alpha}, \alpha>0, \alpha \neq 1$, and the orders do not depend on α, unlike the classical case. © 2005 Elsevier Inc. All rights reserved.

MSC: 41A10; 41A25; 41A35; 41A36

Keywords: q-Bernstein polynomials; Rate of approximation; Modulus of continuity

1. Introduction

Let $q>0$. For each nonnegative integer k, the q-integer $[k]$ and the q-factorial $[k]!$ are defined by

$$
[k]:= \begin{cases}\left(1-q^{k}\right) /(1-q), & q \neq 1 \\ k, & q=1\end{cases}
$$

[^0]and
\[

[k]!:= $$
\begin{cases}{[k][k-1] \cdots[1],} & k \geqslant 1 \\ 1, & k=0\end{cases}
$$
\]

respectively. For the integers $n, k, n \geqslant k \geqslant 0$, the q-binomial coefficients are defined by (see [3, p. 12])

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\frac{[n]!}{[k]![n-k]!}
$$

In 1997, Phillips proposed the following q-Bernstein polynomials $B_{n, q}(f, x)$. For each positive integer n, and $f \in C[0,1]$, we define

$$
B_{n, q}(f, x):=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right)\left[\begin{array}{l}
n \tag{1.1}\\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right)
$$

where it is agreed that an empty product denotes 1 (see [6]). When $q=1, B_{n, q}(f, x)$ reduce to the well-known Bernstein polynomials $B_{n}(f, x)$:

$$
B_{n}(f, x):=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}
$$

In recent years, the q-Bernstein polynomials have attracted much interest, and a great number of interesting results related to the q-Bernstein polynomials have been obtained (see [2,5-9]). This note is concerned with the quantitative results for the rate of convergence of the q-Bernstein polynomials for $0<q<1$. For $f \in C[0,1], t>0$, we define the modulus of continuity $\omega(f, t)$ and the second modulus of smoothness $\omega_{2}(f, t)$ as follows:

$$
\begin{aligned}
& \omega(f ; t):=\sup _{\substack{|x-y| \leq t \\
x, y \in[0,1]}}|f(x)-f(y)|, \\
& \omega_{2}(f, t):=\sup _{0<h \leqslant t} \sup _{x \in[0,1-2 h]}|f(x+2 h)-2 f(x+h)+f(x)| .
\end{aligned}
$$

For fixed $q \in(0,1)$, II'inskii and Ostrovska proved in [2] that for each $f \in C[0,1]$, the sequence $\left\{B_{n, q}(f, x)\right\}$ converges to $B_{\infty, q}(f, x)$ as $n \rightarrow \infty$ uniformly for $x \in[0,1]$, where

$$
B_{\infty, q}(f, x):= \begin{cases}\sum_{k=0}^{\infty} f\left(1-q^{k}\right) \frac{x^{k}}{(1-q)^{k}[k]!} \prod_{s=0}^{\infty}\left(1-q^{s} x\right), & 0 \leqslant x<1 \tag{1.2}\\ f(1) & x=1\end{cases}
$$

The first author of the note gave the following quantitative result for the rate of convergence of the q-Bernstein polynomials (see [9]):

$$
\begin{equation*}
\left\|B_{n, q}(f)-B_{\infty, q}(f)\right\| \leqslant c \omega_{2}\left(f, \sqrt{q^{n}}\right) \tag{1.3}
\end{equation*}
$$

with $\|\cdot\|$ the uniform norm, here c is an absolute constant. Note that when $f(x)=x^{2}$, we have (see [9]):

$$
\left\|B_{n, q}(f)-B_{\infty, q}(f)\right\|=\sup _{x \in[0,1]} \frac{q^{n}(1-q)}{1-q^{n}} x(1-x) \asymp q^{n} \asymp \omega_{2}\left(f, \sqrt{q^{n}}\right),
$$

where $A(n) \asymp B(n)$ means that $A(n) \ll B(n)$ and $A(n) \gg B(n)$, and $A(n) \ll B(n)$ means that there exists a positive constant c independent of n such that $A(n) \leqslant c B(n)$. Hence the estimate (1.3) is sharp in the following sense: the sequence $\sqrt{q^{n}}$ in (1.3) cannot be replaced by any other sequence decreasing to zero more rapidly as $n \rightarrow \infty$.

In the case $q=1$, we have (see [1, p. 308])

$$
\left\|B_{n}(f)-f\right\| \ll \omega_{2}\left(f, n^{-1 / 2}\right) \ll \omega\left(f, n^{-1 / 2}\right)
$$

The above estimates are both sharp in the sense of order, and for the functions $g_{\alpha}(x):=$ $x^{\alpha}, \alpha>0, \alpha \neq 1$, we have the following estimates:

$$
\left\|B_{n}\left(g_{\alpha}\right)-g_{\alpha}\right\| \asymp\left\{\begin{array}{ll}
n^{-\alpha / 2}, & 0<\alpha<2, \alpha \neq 1 \\
n^{-1}, & \alpha>2
\end{array} \omega_{2}\left(g_{\alpha}, n^{-1 / 2}\right) .\right.
$$

Note that the relations $\left\|B_{n}\left(g_{\alpha}\right)-g_{\alpha}\right\| \asymp \omega\left(g_{\alpha}, n^{-1 / 2}\right)$ hold only for $0<\alpha<1$. So in the case $q=1$, the second modulus of smoothness is more appropriate to describe the degree of approximation of the Bernstein polynomials than the modulus of continuity.

What about the case $0<q<1$? One may think it is similar to the case $q=1$ and conjecture that the inequality

$$
\left\|B_{n, q}(f)-B_{\infty, q}(f)\right\| \ll \omega\left(f, \sqrt{q^{n}}\right)
$$

is sharp in the sense of order. However, the above conjecture is wrong. In the note, we obtain the estimates for the rate of convergence for q-Bernstein polynomials $\left\{B_{n, q}(f)\right\}$ for $0<q<1$ in terms of $\omega(f, \cdot)$, and the estimates are sharp with respect to the order for Lipschitz continuous functions. Our results show that in the case $0<q<1, \omega(f, \cdot)$ is more appropriate to describe the rate of convergence for q-Bernstein polynomials $\left\{B_{n, q}(f)\right\}$ than $\omega_{2}(f, \cdot)$ (see the following Remark 1), and this is different from that in the case $q=1$. We also get the exact orders of approximation $\left\|B_{n, q}\left(g_{\alpha}\right)-B_{\infty, q}\left(g_{\alpha}\right)\right\|$, and unlike the classical case, the orders do not depend on the index $\alpha(\alpha>0, \alpha \neq 1)$. Our main results are the following:

Theorem 1. Let $q \in(0,1)$, and let $f \in C[0,1]$. Then

$$
\begin{equation*}
\left\|B_{n, q}(f)-B_{\infty, q}(f)\right\| \leqslant C_{q} \omega\left(f, q^{n}\right) \tag{1.4}
\end{equation*}
$$

where $C_{q}=2+\frac{4 \ln \frac{1}{1-q}}{q(1-q)}$. The above estimate is sharp in the following sense of order: for each $\alpha, 0<\alpha \leqslant 1$, there exists a function $f_{\alpha}(x)$ which belongs to the Lipschitz class Lip $\alpha:=\left\{f \in C[0,1] \mid \omega(f, t) \ll t^{\alpha}\right\}$ such that

$$
\begin{equation*}
\left\|B_{n, q}\left(f_{\alpha}\right)-B_{\infty, q}\left(f_{\alpha}\right)\right\| \gg q^{\alpha n} . \tag{1.5}
\end{equation*}
$$

Remark 1. Combining (1.4) and (1.5), for each $\alpha, 0<\alpha \leqslant 1$, we obtain

$$
\begin{equation*}
\sup _{f \in L i p \alpha}\left\|B_{n, q}(f)-B_{\infty, q}(f)\right\| \asymp q^{\alpha n} . \tag{1.6}
\end{equation*}
$$

Note that if we use the estimate (1.3), we can only get that

$$
\sup _{f \in L i p \alpha}\left\|B_{n, q}(f)-B_{\infty, q}(f)\right\| \ll \sqrt{q^{\alpha n}} .
$$

Theorem 2. Let $q \in(0,1)$, and let $g_{\alpha}(x)=x^{\alpha}, \alpha>0, \alpha \neq 1$. Then

$$
\begin{equation*}
\left\|B_{n, q}\left(g_{\alpha}\right)-B_{\infty, q}\left(g_{\alpha}\right)\right\| \asymp q^{n} \tag{1.7}
\end{equation*}
$$

2. Proofs of Theorems 1-2

In the sequel, we always assume that $q \in(0,1), n \in \mathbb{N}$, and f is a continuous function on $[0,1]$.

Proof of Theorem 1. It follows directly from (1.1) and (1.2) that $B_{n, q}(f, x)$ and $B_{\infty, q}(f, x)$ possess the end point interpolation property, in other words,

$$
\begin{equation*}
B_{n, q}(f, 0)=B_{\infty, q}(f, 0)=f(0), \quad B_{n, q}(f, 1)=B_{\infty, q}(f, 1)=f(1) \tag{2.1}
\end{equation*}
$$

It was proved in $[2,6]$ that $B_{\infty, q}(f ; x)$ and $B_{n, q}(f, x)$ reproduce linear functions, that is,

$$
\begin{equation*}
B_{n, q}(a t+b, x)=B_{\infty, q}(a t+b, x)=a x+b \tag{2.2}
\end{equation*}
$$

We set

$$
p_{n k}(q ; x):=\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right), \quad p_{\infty k}(q ; x):=\frac{x^{k}}{(1-q)^{k}[k]!} \prod_{s=0}^{\infty}\left(1-q^{s} x\right)
$$

Obviously $p_{n k}(q ; x) \geqslant 0, p_{\infty k}(q ; x) \geqslant 0$ for all $x \in[0,1]$. It follows from (2.2) (with $a=0, b=1$) that

$$
\begin{equation*}
\sum_{k=0}^{n} p_{n k}(q ; x)=\sum_{k=0}^{\infty} p_{\infty k}(q ; x)=1 \tag{2.3}
\end{equation*}
$$

Hence for all $x \in(0,1)$, by the definitions of $B_{n, q}(f, x)$ and $B_{\infty, q}(f, x)$, and by (2.3) we know that

$$
\begin{align*}
&\left|B_{n, q}(f, x)-B_{\infty, q}(f, x)\right| \\
&=\left|\sum_{k=0}^{n} f([k] /[n]) p_{n k}(q ; x)-\sum_{k=0}^{\infty} f\left(1-q^{k}\right) p_{\infty k}(q ; x)\right| \\
&=\left|\sum_{k=0}^{n}(f([k] /[n])-f(1)) p_{n k}(q ; x)-\sum_{k=0}^{\infty}\left(f\left(1-q^{k}\right)-f(1)\right) p_{\infty k}(q ; x)\right| \\
& \leqslant \sum_{k=1}^{n}\left|f([k] /[n])-f\left(1-q^{k}\right)\right| p_{n k}(q ; x) \\
&+\sum_{k=0}^{n}\left|f\left(1-q^{k}\right)-f(1)\right|\left|p_{n k}(q ; x)-p_{\infty k}(q ; x)\right| \\
&+\sum_{k=n+1}^{\infty}\left|f\left(1-q^{k}\right)-f(1)\right| p_{\infty k}(q ; x)=: I_{1}+I_{2}+I_{3} . \tag{2.4}
\end{align*}
$$

First we estimate I_{1}, I_{3}. Since

$$
\begin{aligned}
& 0 \leqslant \frac{[k]}{[n]}-\left(1-q^{k}\right)=\frac{1-q^{k}}{1-q^{n}}-\left(1-q^{k}\right)=\frac{q^{n}\left(1-q^{k}\right)}{1-q^{n}} \leqslant q^{n}, \\
& 0 \leqslant 1-\left(1-q^{k}\right)=q^{k} \leqslant q^{n} \quad(k \geqslant n+1),
\end{aligned}
$$

we get

$$
\begin{equation*}
I_{1} \leqslant \omega\left(f, q^{n}\right) \sum_{k=0}^{n} p_{n k}(q ; x)=\omega\left(f, q^{n}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{3} \leqslant \omega\left(f, q^{n}\right) \sum_{k=n+1}^{\infty} p_{\infty k}(q ; x) \leqslant \omega\left(f, q^{n}\right) \tag{2.6}
\end{equation*}
$$

Now we estimate I_{2}. Using the property of modulus of continuity (see [4, p. 20])

$$
\omega(f, \lambda t) \leqslant(1+\lambda) \omega(f, t), \quad \lambda>0
$$

we get

$$
\begin{align*}
I_{2} & \leqslant \sum_{k=0}^{n} \omega\left(f, q^{k}\right)\left|p_{n k}(q ; x)-p_{\infty k}(q ; x)\right| \\
& \leqslant \sum_{k=0}^{n} \omega\left(f, q^{n}\right)\left(1+q^{k-n}\right)\left|p_{n k}(q ; x)-p_{\infty k}(q ; x)\right| \\
& \leqslant 2 \omega\left(f, q^{n}\right) \frac{1}{q^{n}} \sum_{k=0}^{n} q^{k}\left|p_{n k}(q ; x)-p_{\infty k}(q ; x)\right|=: \frac{2}{q^{n}} \omega\left(f, q^{n}\right) \cdot J, \tag{2.7}
\end{align*}
$$

where

$$
\begin{aligned}
J:= & \sum_{k=0}^{n} q^{k}\left|\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right)-\frac{x^{k}}{(1-q)^{k}[k]!} \prod_{s=0}^{\infty}\left(1-q^{s} x\right)\right| \\
= & \sum_{k=0}^{n} q^{k} \left\lvert\,\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}\left(\prod_{s=0}^{n-k-1}\left(1-q^{s} x\right)-\prod_{s=0}^{\infty}\left(1-q^{s} x\right)\right)\right. \\
& \left.+x^{k} \prod_{s=0}^{\infty}\left(1-q^{s} x\right)\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]-\frac{1}{(1-q)^{k}[k]!}\right) \right\rvert\, \\
\leqslant & \sum_{k=0}^{n} q^{k} p_{n k}(q ; x)\left|1-\prod_{s=n-k}^{\infty}\left(1-q^{s} x\right)\right| \\
& +\sum_{k=0}^{n} q^{k} p_{\infty k}(q ; x)\left|\prod_{s=n-k+1}^{n}\left(1-q^{s}\right)-1\right|
\end{aligned}
$$

Assume for a moment that the inequality

$$
\begin{equation*}
1-\prod_{s=j}^{\infty}\left(1-q^{s}\right) \leqslant \frac{q^{j}}{q(1-q)} \ln \frac{1}{1-q} \quad(j=1,2, \ldots) \tag{2.8}
\end{equation*}
$$

holds. Then we obtain

$$
\left|1-\prod_{s=n-k}^{\infty}\left(1-q^{s} x\right)\right| \leqslant 1-\prod_{s=n-k}^{\infty}\left(1-q^{s}\right) \leqslant \frac{q^{n-k}}{q(1-q)} \ln \frac{1}{1-q},
$$

and

$$
\begin{aligned}
\mid 1 & -\prod_{s=n-k+1}^{n}\left(1-q^{s}\right) \mid \\
& \leqslant 1-\prod_{s=n-k+1}^{\infty}\left(1-q^{s}\right) \leqslant \frac{q^{n-k+1}}{q(1-q)} \ln \frac{1}{1-q} \leqslant \frac{q^{n-k}}{q(1-q)} \ln \frac{1}{1-q}
\end{aligned}
$$

Hence

$$
\begin{equation*}
J \leqslant \frac{q^{n}}{q(1-q)} \ln \frac{1}{1-q}\left(\sum_{k=0}^{n} p_{n k}(q ; x)+\sum_{k=0}^{n} p_{\infty k}(q ; x)\right) \leqslant \frac{2 q^{n}}{q(1-q)} \ln \frac{1}{1-q} . \tag{2.9}
\end{equation*}
$$

From (2.1), (2.4)-(2.7), and (2.9), we conclude that

$$
\left\|B_{n, q}(f)-B_{\infty, q}(f)\right\| \leqslant C_{q} \omega\left(f, q^{n}\right)
$$

where $C_{q}=2+\frac{4 \ln \frac{1}{1-q}}{q(1-q)}$.
Now we return to the inequality (2.8) left open above. We note that the inequality $1-\exp (-x) \leqslant x$ holds for each $x \in[0, \infty)$. Then

$$
1-\prod_{s=j}^{\infty}\left(1-q^{s}\right)=1-\exp \left(-\sum_{s=j}^{\infty} \ln \frac{1}{1-q^{s}}\right) \leqslant \sum_{s=j}^{\infty} \ln \frac{1}{1-q^{s}}
$$

From the monotonicity of the function $\frac{1}{x} \ln \frac{1}{1-x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n+1}, x \in[0,1)$ we know that for all $x \in(0, q]$,

$$
\ln \frac{1}{1-x} \leqslant \frac{x}{q} \ln \frac{1}{1-q}
$$

Hence

$$
1-\prod_{s=j}^{\infty}\left(1-q^{s}\right) \leqslant \sum_{s=j}^{\infty} q^{s-1} \ln \frac{1}{1-q}=\frac{q^{j}}{q(1-q)} \ln \frac{1}{1-q}
$$

At last we show that the estimate (1.4) is sharp. For each $\alpha, 0<\alpha \leqslant 1$, suppose that $f_{\alpha}(x)$ is a continuous function which is equal to zero in $[0,1-q]$ and $\left[1-q^{2}, 1\right]$, equal to $(x-(1-q))^{\alpha}$ in $[1-q, 1-q+q(1-q) / 2]$, and linear in the rest of $[0,1]$. Then

$$
\omega\left(f_{\alpha}, t\right) \asymp t^{\alpha}
$$

and

$$
\left\|B_{n, q}\left(f_{\alpha}\right)-B_{\infty, q}\left(f_{\alpha}\right)\right\| \asymp q^{\alpha n}\left\|p_{n 1}(q ; \cdot)\right\| \asymp q^{\alpha n}
$$

The proof of Theorem 1 is complete.
Denote by $\omega(f, t)_{[1-q, 1]}$ the modulus of continuity on the interval [1-q, 1], that is,

$$
\omega(f ; t)_{[1-q, 1]}=\sup _{\substack{|x-y| \leqslant t \\ x, y \in[1-q, 1]}}|f(x)-f(y)| .
$$

Then we have

$$
\begin{equation*}
\left\|B_{n, q}(f)-B_{\infty, q}(f)\right\| \ll q^{n}\|f\|+\omega\left(f, q^{n}\right)_{[1-q, 1]} \tag{2.10}
\end{equation*}
$$

In fact, if we take continuous $\tilde{f}=f$ on $[1-q, 1] \bigcup\{0\}$ and linear on $[0,1-q]$, we get $B_{n, q}(f)=B_{n, q}(\tilde{f})$ and $B_{\infty, q}(f)=B_{\infty, q}(\tilde{f})$. At the same time $\omega(\tilde{f}, t) \ll\|f\| t+$ $\omega(f, t)_{[1-q, 1]}$. By (1.4) we get (2.10).

Remark 2. From the proof of Theorem 1, we know that the rate of convergence for q Bernstein polynomials $B_{n, q}(f, x)$ depends only on the smoothness of the function $f(x)$ at the points $1-q^{k}, k=1,2, \cdots$ (from the right), and at $x=1$.

Proof of Theorem 2. Since $\omega\left(x^{\alpha}, t\right)_{[1-q, 1]} \asymp t$ holds for each $\alpha>0, \alpha \neq 1$, by (2.10) we obtain that

$$
\left\|B_{n, q}\left(t^{\alpha}\right)-B_{\infty, q}\left(t^{\alpha}\right)\right\| \ll q^{n}
$$

Now we prove the lower estimates of $\left\|B_{n, q}\left(t^{\alpha}\right)-B_{\infty, q}\left(t^{\alpha}\right)\right\|$ for all $\alpha>0, \alpha \neq 1$. From the formulas (7.61) and (7.62) in [7, p. 270], we know if f is a convex (concave) function, then the sequence $\left\{B_{n, q}(f, x)\right\}$ is decreasing (increasing) for each $x \in[0,1]$, and also

$$
\left|B_{n, q}(f, x)-B_{n+1, q}(f, x)\right|=\sum_{k=1}^{n}\left|a_{n k}(f)\right| p_{n+1 k}(q ; x)
$$

where

$$
\begin{equation*}
a_{n k}(f)=\frac{[n+1-k]}{[n+1]} f\left(\frac{[k]}{[n]}\right)+q^{n+1-k} \frac{[k]}{[n+1]} f\left(\frac{[k-1]}{[n]}\right)-f\left(\frac{[k]}{[n+1]}\right) . \tag{2.11}
\end{equation*}
$$

Since the functions x^{α} are concave for all $0<\alpha<1$ and convex for all $\alpha>1$, then for all $\alpha>0, \alpha \neq 1$ we get

$$
\begin{equation*}
\left|B_{n, q}\left(t^{\alpha}, x\right)-B_{\infty, q}\left(t^{\alpha}, x\right)\right| \geqslant\left|B_{n, q}\left(t^{\alpha}, x\right)-B_{n+1, q}\left(t^{\alpha}, x\right)\right| \geqslant\left|a_{n 1}\left(t^{\alpha}\right)\right| p_{n+11}(q ; x) . \tag{2.12}
\end{equation*}
$$

It follows from (2.11) that

$$
\begin{align*}
& q^{-n}\left|a_{n 1}\left(x^{\alpha}\right)\right| \\
& \quad=q^{-n}\left|\frac{[n]}{[n+1]}\left(\frac{[1]}{[n]}\right)^{\alpha}-\left(\frac{[1]}{[n+1]}\right)^{\alpha}\right|=\frac{q^{-n}}{[n+1]}\left|[n]^{1-\alpha}-[n+1]^{1-\alpha}\right| \\
& \quad=\frac{q^{-n}}{[n+1]}\left|(1-\alpha) \xi^{-\alpha}([n]-[n+1])\right| \quad(\text { where } \xi \in([n],[n+1])) \\
& \quad=\frac{1-q}{1-q^{n+1}}\left|(1-\alpha) \xi^{-\alpha}\right| \rightarrow(1-q)^{1+\alpha}|1-\alpha| \quad \text { as } n \rightarrow \infty \tag{2.13}
\end{align*}
$$

where in the last equality, we use the fact that $\xi^{-1} \rightarrow 1-q$ as $n \rightarrow \infty$. From (2.12) and (2.13) we conclude that

$$
\left\|B_{n, q}\left(t^{\alpha}\right)-B_{\infty, q}\left(t^{\alpha}\right)\right\| \geqslant\left|a_{n 1}\left(x^{\alpha}\right)\right|\left\|p_{n+11}(q ; \cdot)\right\| \gg q^{n} .
$$

The proof of Theorem 2 is finished.

Acknowledgments

The authors are very grateful to the anonymous referees and Professor D. Leviatan for many valuable comments and suggestions which helped to improve the drafts.

References

[1] R.A. Devore, G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
[2] A. II'inskii, S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116 (1) (2002) 100-112.
[3] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.
[4] G.G. Lorentz, Bernstein Polynomials, Mathematical Expo. vol. 8, University of Toronto Press, Toronto, 1953.
[5] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory 123 (2) (2003) 232-255.
[6] G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997) 511-518.
[7] G.M. Phillips, Interpolation and Approximation by Polynomials, CMS Books in Mathematics, vol. 14, Springer, Berlin, 2003.
[8] V.S. Videnskii, On some classes of q-parametric positive operators, Operator Theory: Adv. Appl. 158 (2005) 213-222.
[9] Wang Heping, Korovkin-type theorem and application, J. Approx. Theory 132 (2) (2005) 258-264.

[^0]: ${ }^{4}$ Supported by National Natural Science Foundation of China (Project no. 10201021), Scientific Research Common Program of Beijing Municipal Commission of Education (Project no. KM200310028106), and by Beijing Natural Science Foundation.

 * Corresponding author.

 E-mail address: wanghp@mail.cnu.edu.cn (H. Wang).

